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Abstract

We discuss the Navier-Stokes equations for an incompressible fluid with a viscosity
that is allowed to depend on the pressure. Ellipticity and the complementing condition of
Agmon, Douglis and Nirenberg [1] are discussed. It is found that the pressure dependence
of viscosity leads to the possibility of a change of type. It is shown that the Dirichlet
initial-boundary value problem is well posed as long as the equations do not change type.

. AMS (MOS) Subject Classifications: 35J25, 35J55, 35J65, 35Q10, 76D05

- Key Words: Navier-Stokes equations, pressure dependent viscosity; nonlinear Neumann

problems, complementing condition, .nitial value problems, change of type. . __ )
Work Unit Number 1 (Applied Analysis)
e
P
o
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and sup- q}

ported by the National Science Foundation under Grant Nos. MCS-8215064 and DMS-

8451761. E:j




Significance and Explanation

\

\
\

Qua
4, L
NSPECY?D

In most mathematical treatments of the Navier-Stokes equations, it is assumed that
the viscosity is a constant. Viscosities of real fluids, however, depend not only on the tem-
perature, but may also change significantly with pressure, in particular at high pressures.
In this paper, the mathematical consequences of such a pressure dependence are investi-
gated. It is found that, in contrast to the ordinary Navier-Stokes equations, ellipticity can
be lost, and the equations are not necessarily well-posed. The complementing condition
for traction boundary conditions is investigated, and an existence theorem for the initial-
boundary value problem with prescribed velocities on the wall is proved. One of the main
differences to ordinary Navier-Stokes theory lies in the elimination of the pressure, which
now leads to a nonlinear elliptic partial differential equation instead of Laplace’s equation.
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SOME REMARKS ON THE NAVIER-STOKES EQUATIONS
WITH A PRESSURE-DEPENDENT VISCOSITY
Michael Renardy

1. Introduction

In most mathematical treatments of the Navier-Stokes equations, it is assumed that
the viscosity of the fluid is constant. Viscosities of real fluids, however, depend not only
on the temperature, but may also depend on the pressure. In fact, the possibility of
a pressure-dependent viscosity, even for incompressible fluids, is already mentioned by
Stokes [8]. Stokes does not pursue the matter further, since experiments at his time did
not suggest that this pressure dependence was important. More recent experiments at very
high pressures, however, have shown considerable changes in viscosity. In (3], for example,
various organic liquids were studied at pressures of up to several thousand atmospheres. It
was found that for some of these liquids the viscosity increased by two orders of magnitude
compared to its value at atmospheric pressure, while compression was only of the order of
10% [2]. Such data suggest that it is reasonable to consider a pressure dependence of the
viscosity, even in fluids that can, to a good approximation, be regarded as incompressible.
The results of [3] indicate that the dependence of viscosity on pressure becomes stronger
as the pressure increases and that it is stronger in fluids that already have a high viscosity
at atmospheric pressure. We note that the viscosities of polymer melts are several orders
of magnitude higher than that of any of the fluids studied in [3].

From a theoretical point of view, we can think of incompressible fluids as a limiting

case of compressible fluids. For a Newtonian compressible fluid, the stress tensor is given
by

T = —¢(p)1 + 20(p)(D - % div u 1) + ¢(p) div u 1. (1)

Here D denotes the symmetric part of the velocity gradient, and D — % div u 1 is the
deviatoric (traceless) part of D. The total “pressure” is given by

p = é(p) - ¢(p) div u. (2)

Noting that div u = ~ £ In p, we see that (2) is a first order differential equation relating
p to p. The solution of (2) is given by a functional expressing p in terms of the history of
p. The incompressible limit arises by considering functions ¢, and ¢, such that, for any
given p, the solution of (2) tends to a constant p = p, as n — oo. For example, we may
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N take ¢, (p) = Cn(p — po)/p, ¢n equal to a positive constant, and let C, tend to infinity. If
n(p) is independent of n, then the incompressible limit yields the classical Navier-Stokes
'_Zf equation with constant viscosity n = n(po). We may, however, consider a limiting case
o where not only d¢,/dp becomes infinite as n — oo, but dn,/dp, and perhaps ¢,, also
' become infinite. We must then in general regard » as a functional of the history of p, even
- in the incompressible case. In this paper, we restrict attention to the case where 9 is just a
ol function of the instantaneous value of p. Of course we shall assume throughout the paper
':':‘ that the function n(p) is always positive.
N

For the classical Navier-Stokes equations, it is well known that the stationary problem
is elliptic in the sense of Agmon, Douglis and Nirenberg [1], that the time-dependent
problem is “parabolic” and that both Dirichlet and traction conditions on the boundary
satisfy the appropriate complementing conditions. This is of fundamental importance
for studying the regularity of solutions to the stationary problem as well as for studying
the time-dependent initial-boundary value problem. If the viscosity is dependent on the
pressure, ellipticity can fail. This, and the complementing condition for Dirichlet and
traction boundary conditions will be discussed in section 2.

If ellipticity fails, we can not expect well-posedness of the initial-boundary value prob-
lem. In section 3, we will, however, show a local existence result for the Dirichlet initial-
boundary value problem under the assumption that the initial data are such that ellipticity
is satisfied. The main complication compared to ordinary Navier-Stokes theory is that we
can not use the usual Hodge projection to eliminate the pressure. Instead, we must solve a
nonlinear elliptic equation for eliminating the pressure. The linearization of this equation
at the current velocity and pressure defines a projection operator that depends on the ve-
locity field and the pressure and assumes the role of the Hodge projection. This makes the
theory considerably more complicated than that of the ordinary Navier-Stokes equations.
Another difference is that we can of course no longer add a constant to the pressure with-
out altering the flow. However, this indeterminacy in the classical Navier-Stokes theory
has an analogue in the general case, and in order to obtain a unique solution, we must for
example prescribe the average pressure as a function of time, in addition to the initial and
boundary conditions for the velocity field.

2. Ellipticity and the Complementing Condition
The Navier-Stokes equations have the form
p(ii + (u- V)u) = div [n(p)(Vu + (Vu)T)] - Vp+ /, (3)

div u = 0.

We can rewrite this in the form
pli + (u- V)u) = n(p)Au + {n'(p) Vu +(Vu)T] - 1}Vp + f, (4)

divu =0.
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The ellipticity and complementing conditions concern the terms of highest differential
order in the equation, and the coefficients of these terms are treated as though they were
constant. That is, in order to discuss these conditions, we have to look at the problem

pi = nAu+ (A ~ 1)Vp, (8)

divu =0.

Here the constant matrix A replaces #'(p){Vu + (Vu)7], and it is therefore symmetric and
traceless. For stationary problems we have @ = 0. The stationary Navier-Stokes system is
elliptic if equation (5) (with & = 0) has no non-constant periodic solutions on all of space.

It is not difficult to see that this is the case if and only if A — 1 is negative definite (for
the ordinary Navier-Stokes equations, A = 0, and the equations are always elliptic). To
see this, let us first assume that A — 1 is negative definite. We multiply the first equation
of (5) by {1 ~ A)~'u and integrate over one period. After integrating by parts, this yields

[ Tt - a3 de=o0, )
0k

which immediately yields Vu = 0. For the time-dependent problem, we obtain in the same
fashion that

2 2 [Tua- Aty ae- - [ Yaou)a- 3 @u dn )
1)

1),k

and hence periodic solutions with non-zero wave numbers decay exponentially with a rate
proportional to the square of the wave vector, i.e. the equation is “parabolic”.

If A — 1 is not definite, the behavior changes. By taking the divergence in the first
equation of (5), we see that the equation for p is given by

3 div |(A - 1)Vp] =0, (8)
L

Lo and there are now nonconstant spatially periodic solutions to this equation. As a con-
K sequence, we can find nonconstant periodic solutions to (5) in the stationary case, and

exponentially growing solutions in the time-dependent case. Solutions to the initial value

problem are not unique, and if inhomogeneous terms are added to the equation, they may
T not exist. We conclude that, in contrast to the ordinary Navier-Stokes equations, the initial
! value problem is not always well-posed. Only as long as the eigenvalues of the symmetric
part of the velocity gradient are less than fn—'l('f) can we expect to prove a local existence
result. If this condition is violated, problems of nonexistence and nonuniqueness occur
g in the constant coefficient problem and hence can be expected in the full Navier-Stokes
B system as well.
. Roughly speaking, ellipticity is a condition concerning the local behavior of solutions
!: near points away from the boundary of the domain in which the equations are studied.
Near the boundary, however, the nature of the boundary conditions is important, and
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“well-behaved” problems are characterized by a restriction on the boundary conditions,
in addition to ellipticity. This extra condition is known as the complementing condition.
The boundary is regarded as locally flat, and one looks at a half-space problem. Again we

.

o

" consider the terms of highest differential order in the equations, and we look for solutions
of the half-space problem that are nonconstant and periodic in the directions parallel to

\‘ﬁ the boundary of the half space and decay exponentially away from the boundary. The

e complementing condition for the stationary problem means that no nontrivial solutions

1\3' of this kind exist, for the time-dependent problem the appropriate condition is again the

' exponential decay of such solutions.

.
.
e

.
’

Two types of boundary conditions for the Navier-Stokes equations are particularly
important. The most commonly used are Dirichlet conditions, i.e. ¥ = 0 on the boundary.
For these conditions the complementing conditions are trivial, since the energy estimates
(6) and (7) carry over without any change to the half-space problem. For problems with free
surfaces, traction boundary conditions are important. The discussion of these conditions
is much more complicated, and we shall only consider the two-dimensional case.

On the half-plane z > 0 of R?, we consider equation (5) with the linearized traction
boundary conditions

8u1 8“2
—— —= A =0,
n( 9y T az) T AP

0
2'1'5“;l‘+(.411—1)l)=0- (9)

We use Fourier transform in the y-direction and Laplace transform in time and look for
solutions proportional to ¢°te*@¥. We then have the following set of equations ‘

pou; = n(ul — auy) + (A1 — 1)p' + Arziap,

pouz = n(uf — auz) + A12p" + (A22 — 1)iap, (10)
u} + taug = 0.

The boundary conditions at z = 0 read
n(iou; + uy) + App =0, (11)

2nuy + (A —1)p=0.

Here ’ denotes differentiation with respect to z. The complementing condition says that
for Re 0 > 0 and a # 0 there are no nontrivial solutions which decay as £ — oo.

Without loss of generality, we can assume that = p = a = 1 (this can always be
achieved by rescaling). Let us also recall that Ay + A22 = 0, and that ellipticity implies
that A%, < (1 - Ay;)(1 — A22). In particular this means that A,, and A3 lie between -1
and +1. We differentiate the first equation of (10) with respect to z, multiply the second
by ia, and add them. Using the divergence condition, we obtain

(A“ - l)p” + 2A12ip' - (Agz - l)p = 0. (12)
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The solutions to this equation are e~*%, where

_—Auit VAL -)An-1)- 4% (13)

A 1-An

Since we are interested in solutions that decay for £ — o0, we must choose the plus sign
in the numerator of (13).

It is easy to see that p = O does not lead to any nontrivial solutions of (10),(11), hence
we set p = e~ ** with A given by (13). From (10) we find

Vitoz (All-l)x—Alzi —Az 14
T xC1-e (14)

u; =cr1e

_ -V1+o (1 - Agg)i + AuA —Az
Uy = C2€ 7% 4+ MN-1-0 € .
We have assumed here that A? # 1+ 0. The case A? = 1+ 0 requires a separate discussion,
which will be given below. From the incompressibility and boundary conditions, we find
three constraints for the two parameters ¢; and c¢;. This leads to an eigenvalue problem
for 0. The three conditions are

—V1+o0¢; +tc2 =0,

. ,(An - I)A - Aui (l - Azz)i + Au/\
— ‘/ - X A =0 5
1€y 1+OC2+1 A? 1 pn 22 1 po + A2 s (1 )

~2V1 + oc¢ — 2)\(‘4“)\;})1'\::”' +(An-1)=0.

Let now 4 = /1 + 0. After some algebra equations (15) lead to the following equation of
third degree for v

1+ + N1 = Any) - 26A55(1 - ) —2X(1- An) +29(1 — A) = 0. (16)

The roots of (16) were computed at a grid of points in the set {(A11,A412)] — 1 < Ay; <
1,A%, < (1~ A%))}. No roots such that Re v > 0 and Re 0 = Re (y2 - 1) > 0 were found.
If we assume A = /1 + o, we arrive, after some algebra, at the equation

i3+ 2)(1 - Any) + A12(1 = A% + (A)) — Az2)id = 0. (17)

By inserting (13) into this, and comparing the real and imaginary parts, we find that this
is the case only if
Au = 0, and Agg =1, (18)

This leads to
A=0,0=-1, (19)

and ellipticity does not hold for these parameters. We conclude that, at least in two
dimensions, the complementing condition is satisfied as long as ellipticity holds.
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3. The initial value problem for Dirichlet type boundary conditions

We consider equation (4) on a bounded domain 2 C R® with smooth boundary. We
want to show the existence of solutions satisfying a given initial condition

u(z,0) = v(z), (20)
and Dirichlet boundary conditions
u(z,t) = w(z,t) on 39. (21)

It is assumed that (20) and (21) are compatible with the incompressibility condition and
with each other. In addition, we will have to prescribe the average pressure as a function
of time,

] p(z.1) dz = ~(t). (22)
Q

The latter condition is needed to remove an indeterminacy already present in the ordinary
Navier-Stokes equations. There one can add an arbitrary constant to the pressure without
changing the flow. If we want to make the pressure uniquely determined, a condition such
as (22) is needed. In the present situation, the choice of (t) will affect the velocity as well
as the pressure.

One of the crucial steps in dealing with the Navier-Stokes equations is the elimination
of the pressure. In the classical case this is achieved by the Hodge projection or, in
other words, by solving a Neumann boundary value problem (see e.g. [9]). In the more
complicated situation of equation (4), this Neumann problem is replaced by a nonlinear
elliptic equation. We obtain this equation by taking the divergence of (4) and we obtain the
associated boundary condition by multiplying (4) by the outer unit normal of the domain.
This leads to the problem

div {n(p)Au + (29" (p)D - l)Vp} = div {p(u -V)u — f}, (23)

with the boundary condition
n- {n(p)du + (2n'(p)D - 1)Vp} = n- {pl + (u- V)u) - /. (24)

We want to solve (23), (24) for p when u is given. We require that p satisfy the additional
constraint

/ p(z) dz =, (25)
Q

where 7 is a given real number. We shall prove the following existence and uniqueness
result.
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Theorem 1:

Let 0 < a < 1. Assume that u is in H4(Q) n C3=(]), f is in H}(N) N C(N), &
satisfies the condition [ sqW-n dS = 0 and can be extended to a divergence-free vectorfield,
denoted again by w, which lies in H2(02) N C'*(Q1). Moreover, assume that n is a smooth
function of p such that n'(p) is bounded and limp_. + oo 3-(’?1 = 0. Assume, moreover, that
the eigenvalues of D are strictly less than 1/(2 maxn’), sf maxn’ is positive, and strictly
greater than 1/(2minn’), if minn’ is negative. Then (23)-(25) has a unique solution
p € H3(Q) r C22(N).

Proof:
We set g = p(u - V)u + p» — f. To find solutions of (23)-(25), we look at the family
of problems

div {rn(p)Au + (2r0'(p)D ~ 1)Vp} =div g, (26)

with boundary condition

n-{rn(p)Au + (279'(p)D - 1)Vp} =n-g, (27)

and the constraint (25).

For 7 = 0, we have the ordinary Neumann problem, and we have a unique solution
p € H3(Q)NC?(Q) for every given g € HZ(N)NC (1) and v € R. As 1 is increased, this
solution can be uniquely continued tc a family of solutions p,, unless ure of the following
happens.

1. Ellipticity is lost.
2. The norm of p, in H3 N C?%° becomes unbounded as r approaches some value 7¢.
3. The linearized problem has nontrivial solutions.

If none of these three happens up to 7 = 1, a solution of (23)-(25) ¢xists. Conwersely,
if every solution for 7 = 1 can be continued back to r = 0, we have a uniqueness result.

Ellipticity means that the matrix 2rn’(p)D — 1 remains negative definite. According
to our assumption on the eigenvalues of D, ellipticity holds up to 7 = 1.

The estimates of Agmon, Douglis and Nirenberg can be used to show that the norm
of pin H3 N C%* remains bounded as long as the C!-norm remains bounded and the
ellipticity constant remains strictly positive. We can then use theorem 2.1 on page 476 of
4] to obtain a bound on the C!-norm provided there is a bound on the maximum norm. If,
moreover, we assume that n’ is bounded, then lemma 3.1 of [5] applies, and we can replace
the maximum norm by the L!-norm. We can derive an a priori bound on the L!-norm
(in fact on a stronger norm) of p as follows. We multiply (25) by p and integrate over the
domain . After an integration by parts, we have

/ Vp(1 - 2rp'(p)D)Vp ~ rAun(p)Vp dz = / p div g dz — pg-n dS. (28)
%3 Q an

According to our assumption on 7, we can, for any ¢ > 0, find a constant C(¢) such that
n(p) < C(¢) ~ ¢]p. When we use this estimate in the second term on the left of (28), we
get an estimate on the H'-norm of p.
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Finally, we have to show that the linearized problem can have only the trivial solution,
i.e. that there can not be nontrivial solutions ¢ of

div {rn'(p.)Aué + 2rn"(p,)DVp, ¢ + (277'(p,)D — 1)Vs} = 0, (29)
with boundary condition
n-{rn'(p;)Aug + 2rn"(p,)DVp.6 + (2r7'(p.)D — 1)V¢} =0, (30)

and
/ é dz = 0. (31)
Q

This problem is of the form

div {AV¢ + fo} =0, (32)
with boundary condition

n-{AVé+ fé} =0, (33)
where A is a positive definite symmetric matrix. Let us consider the parabolic equation

¢ =div {AV¢ + fo} (34)

with boundary condition (33) and let T be the time 1 evolution operator, i.e. the operator
that takes an initial datum ¢(t = 0) to ¢(t = 1). It is easy to verify that [, T¢ dz =
fn ¢ dz. 1t follows from the strong maximum principle for parabolic equations (see chapter
9 of [6]) that T¢ > 0 if ¢ > 0 and ¢ does not vanish identically. This implies that, if
T¢ = ¢, then ¢ must be either positive or negative. Assume the contrary and let ¢+ be
the positive part of ¢. If ¢ is not positive or negative, then ¢, is not identical to ¢ and
not identical to 0. It follows that T¢,. > T¢ = ¢ and Té, > 0, hence T, > ¢,. But
this is a contradiction since T¢, must have the same integral as ¢, . Hence the equation
T¢ = ¢ has at most one linearly independent solution. Since T is a compact operator in
L?, the operator 1 — T has index zero, and since it maps to functions with zero integral,
it is obviously not surjective. Hence the nullspace of T is one-dimensional. The solutions
to (32), (33) satisfy T¢ = ¢, and can therefore not have zero integral. This completes the
proof.
e

Unfortunately, the assumptions on the function n(p) in theorem 1 are not very realistic
from a physical point of view. The experiments [3] show that n increases with p. Hence
it may not be realistic to assume that 5’ is bounded, and it is certainly not realistic that
n(p)/p tends to zero as p — +oo. Negative pressures lead to cavitation in reality, and
hence any assumptions on n(p) for p — —oo are academic. Under realistic assumptions,
we can therefore not guarantee the existence of a pressure for a prescribed velocity field
and body force. Of course an implicit function argument can be used if the velocity and
body force are small.

We now turn to the discussion of the Dirichlet initial value problem given by (3) and
(20)-(22). We make the following assumptions on the data of the problem. All these
assumptions are assumed to hold on some time interval |0,¢,].




FARNN LU R B SO

T VY YT Y

RO I PG WP YN oo o B

(i) The body force f is a uniformly Holder continuous function of time taking values
in H?(f). Its time derivative is uniformly Holder continuous with values in L2(1).
Moreover, at ¢ = 0, f lies in C}2({).

(ii) The function w satisfies the condition fan w-n dS = 0. It can hence be extended
to a divergence-free vector field in the interior of ), which we denote again by w.
We assume that w is uniformly Holder continuous with values in H*4((), its time
derivative is uniformly Holder continuous with values in H%(f1) and its second time
derivative is uniformly Holder continuous with values in L’(ﬂ). At t =0, w lies in
C32(01). Moreover, 1 lies in C1*(f1) for t = 0.

(iii) v is divergence free and lies in H4(01) N C3=(0Q).
(iv) The function v has a uniformly Hélder continuous derivative.

(v) For t = 0, equations (23)-(25) (with u = v) have a unique solution py € H3(2) N
C%>(11) (e.g. if the assumptions of theorem 1 hold). The matrix 2n’(po)[Vv+(Vv)T]-
1 is strictly negative definite on all of .

(vi) v(z) = w(z,0) on 30, and u(z,t = 0) as computed from (3) agrees with w(z,0) on
on.

Theorem 2:

Assume that assumptions (i)-(vi) hold. Then equation (8) with the data (20)-(22)
has a unique solution on some time interval [0,T)) with 0 < Ty < to. The solution
is such that u € C°([0,T,), H%(N)) n C*(|0,Ty), H3(N)) N C?(|0,T1), L3(N)) and p €
Cc(lo,Ty), H3(1)) N C([0,T,), H}(N)).

Proof:

We shall look not only at equation (3) itself, but also at the time differentiated equa-
tion. Let us denote @ = u — Au (A is a constant to be specified later) and ¢ = p. On
differentiating (3), we obtain the following evolution problem for a

pla+da +A%u+ ((@a+ du) - V)u + (u-V)(a+ Iu)) =
div [n'(p)g(Vu + (Vo)) + n(p)(V(e + du) + (V(a + 2u))T)| - Vg + f,  (35)
diva =0.

Moreover, we have the boundary condition
a(z,t) = w(z,t) — Aw(z,t) on 31, (36)
and the average of ¢ is given by

/ q(z,t) dz = 4(¢). (37)
Q

Finally, an initial condition for a is obtained from equation (3)

a(z,0) = ~Av - (v-V)v + :—’ {div In(po)(Vv + (Vo) -~ Vpo ~ f(z.0)}.  (38)
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Here po is the initial pressure which is guaranteed to exist by assumption (v).

The strategy is now to express u and p in terms of a using equations (3), (21) and
(22). By inserting the result into (35), we get a problem involving only a and ¢. From this,
we eliminate g by solving a Neumann problem as above. This finally yields an evolution
equation for a, which we shall treat using the theory of analytic semigroups.

At time t = 0, we have (3), (21) and (22) satisfied with u = v, p = po and e = a(z,0)
as given by (38). In the neighborhood of these data, we want to show that if A € R is
chosen large enough, then we can uniquely resolve the equations for « € H* and p € H3
in terms of a € H%, f € H?, w € H* and 4. In a weaker norm, we shall get u € H?
and p€ H2interms of a € H!, f € H', w € H3, and ~. In order to show this, we
use the implicit function theorem. For this, we have to look at the linearized equations.
Linearizing (3) with respect to u and p, we arrive at the following problem

div [n(po)(Vr +(Vu)T) +q'(po)p(Vv+(Vv)T)]—Vp—p((v-V)u+ (u-V)v)—pAiu =g, (39)

divu=0.

We have to show that (39) together with the inhomogenous Dirichlet conditions

= w on 91, (40)

/np dz = 7, (41)

has a unique solution u € H*, p € H?3 for every g € H?, every w that is the trace of a
divergence-free vectorfield in H%, and every v € R (plus the corresponding assertion for
the weaker norms). The inhomogeneous boundary terms can be absorbed into g by letting
© = w + %, where w is an extension of the boundary data, so we can henceforth assume
that w = 0, and also that v = 0.

We shall derive estimates that imply uniqueness of solutions to (39)-(41) for large
enough A. Moreover, these estimates are such that they hold uniformly for a family of
problems which continuously connect (39) to the standard Navier-Stokes equations (we
can use a homotopy that takes n to a constant function). The results of chapter 12 in [1]
then imply existence.

Hence we now let ¢ = 0 in (39), w = 0 in (40), v = 0 in (41) and we assume that A is
positive and large. We first multiply (39) by {1 — n’(po)(Vv + (Vv)T)} ~'u and integrate
over the domain {1. After an integration by parts this yields an estimate of the form
(provided A is large enough)

Lullgy + Mjuflpz < Chlipips. (42)
The elliptic estimates of Agmon, Douglis and Nirenberg 1] lead to

Hullgz + lipllgy < Co(Alully2 + |IpliLe)-
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:;: By taking the two together, we arrive at
»e
: gz + el + Ml < Callaliza- (44)
We can use the same procedure as in the proof of theorem 1 to eliminate the pressure, and )
we note that the equation for the pressure is independent of A. This gives p as a linear 105 0%
function of u and a straightforward energy estimate leads to b{'.}
i
3
Ipllas < Caljulla (45) R
holds. Hence the mapping u € H? — p € L? is compact. It follows that for every ¢ > 0 0 ;T
there is a constant C/(¢) such that ',,:;;‘3_‘
Rt
S0,
Ipll2s < ellulias + C(O)lullzs (46) i
(use approximation by operators of finite rank and the fact that L? is dense in the dual of RO
H?). We now obtain the desired uniqueness result by inserting (46) into (44) and choosing e
€ and X in such a way that ¢C3 < 1 and C(€)Ca < A. :‘.:ﬁ:{:-
Using the same steps, we can obtain a resolvent estimate for complex A. Let A be _‘i:::'\-::
in any sector ¥ of the complex plane which excludes the negative half-axis and let |A| be
sufficiently large. Moreover, assume that w = 0, 4 = 0. Then the solution to (39)-(41) o,
satisfies an estimate of the form oy
SRy
-\.h.‘:lt
lllae + 2l + Mlullzs < Clgllzs (47) W
with a constant C that does not depend on A. 7
We now turn to equations (35)-(37). According to the above we may regard u and
p as having been expressed in terms of a and the data of the problem. Moreover, we - -
can subtract appropriate reference functions from e and ¢ such that (36) and (37) are S
transformed to a homogeneous form. Finally, we can eliminate q by using the procedure Do
in the proof of theorem 1. In this way, we obtain an evolution problem involving only a "
as an unknown. To this problem we can now apply the theory of Sobolevskii [7). The O
essential assumption of this theory is that the terms of highest differential order generate L~'_::-"::‘
an analytic semigroup. The terms of highest order are those terms on the right hand side of R
(35) which involve second derivatives of a and first derivatives of . These are of precisely NS
the same form as in (39), and hence the needed resolvent estimate follows from (47). The L.
remaining assumptions of 7] concerning smoothness of the nonlinearities and regularity of -j'.:-}'i:-:
the data are easily checked. This completes the proof. NS
. A
RN
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